Search results for "dark matter: detector"

showing 7 items of 7 documents

Excess electronic recoil events in XENON1T

2020

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…

xenon: targetaxionssolar axionmagnetic momentdimension: 3neutrino: solarPhysics beyond the Standard ModelSolar neutrinodark matter: direct detection01 natural sciences7. Clean energyHigh Energy Physics - ExperimentDark matter direct detection axionHigh Energy Physics - Experiment (hep-ex)neutrinoXENONHigh Energy Physics - Phenomenology (hep-ph)background: lowRecoilelectron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysParticle Physics Experimentscoupling: (axion 2electron)multi-purpose particle detectornuclear instrumentationComputingMilieux_MISCELLANEOUSinstrumentationPhysicsxenon: liquidboson: dark matteraxion 2nucleontritiumnew physics: search forsemileptonic decayboson: vectortensionneutrino: magnetic momentHigh Energy Physics - Phenomenologyaxion 2photonlow backgroundbosonNeutrinoionizing radiationNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)dark matter detectorelectronic recoilElectron captureXENON1T detectorDark matterlow-energy electronic recoil dataFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterNONuclear physicsPE2_2PE2_1tritium: semileptonic decay0103 physical sciencessolar axion modelsurface[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]axion: couplingPE2_4010306 general physicspseudoscalarAxiondark matter: vectordark matter XENON1T detector electronic recoilsolar neutrinodetectorDark Matter Axions Beta Decay Liquid Xenon TPC010308 nuclear & particles physicsaxion 2electroncoupling: (axion 2nucleon)dark matter: detectormodel: axionGran Sassometrology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axionstellar constraintscoupling: (axion 2photon)High Energy Physics::Experimentparticle dark matterdirect detectionbeta decayaxion: solar[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Long-lived particles at the energy frontier: the MATHUSLA physics case

2019

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …

Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelHEAVY MAJORANA NEUTRINOSGeneral Physics and Astronomy01 natural sciencesMathematical SciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NaturalnessCERN LHC Coll: upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: masslong-lived particlesPhysicsLarge Hadron Collidernew physicsCMShierarchy problemneutrinosHierarchy problemhep-phATLASDARK-MATTER SEARCHESCOSMIC-RAYSmissing-energyHigh Energy Physics - PhenomenologyLarge Hadron ColliderPhysical SciencesNeutrinoLIGHT HIGGS-BOSONParticle Physics - ExperimentParticle physicsGeneral PhysicsSTERILE NEUTRINOSPHI-MESON DECAYSnucleosynthesis: big bangDark matterFOS: Physical sciencesEXTENSIVE AIR-SHOWERSdark matterVECTOR GAUGE BOSON0103 physical sciences010306 general physicsnumerical calculationsParticle Physics - PhenomenologyLEFT-RIGHT SYMMETRYMissing energyhep-exbackgroundBaryogenesisdark matter: detectortriggersensitivityBaryogenesis[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]simplified modelsDOUBLE-BETA DECAYparticle: long-lived
researchProduct

Improved calculations of beta decay backgrounds to new physics in liquid xenon detectors

2020

We present high-precision theoretical predictions for the electron energy spectra for the ground-state to ground-state $\beta$ decays of $^{214}$Pb, $^{212}$Pb, and $^{85}$Kr most relevant to the background of liquid xenon dark matter detectors. The effects of nuclear structure on the spectral shapes are taken into account using large-scale shell model calculations. Final spectra also include atomic screening and exchange effects. The impact of nuclear structure effects on the $^{214}$Pb and $^{212}$Pb spectra below $\approx100$ keV, pertinent for several searches for new physics, are found to be comparatively larger than those from the atomic effects alone. We find that the full calculatio…

electronElectron01 natural sciencesSpectral lineHigh Energy Physics - ExperimentspectrumHigh Energy Physics - Experiment (hep-ex)Xenon[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysground stateNuclear Experiment (nucl-ex)Nuclear Experimentnuclear instrumentationPhysicsinstrumentationxenon: liquidnew physics: search forNuclear structureaxial-vectorsemileptonic decayCoupling (probability)simulation3. Good healthradioactivityGround stateionizing radiationSemileptonic decay[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]energy spectrumFOS: Physical scienceschemistry.chemical_elementspectrum analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physics0103 physical sciencesstructure[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationssignal processingPseudovectorkryptonnucleus: semileptonic decayleaddetector010308 nuclear & particles physicsbackgroundscreeningDecay data measurementshell modelnuclear matter: effectdark matter: detector[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationcoupling: axial-vectorxenonmetrologychemistry13. Climate actionspectralelectron: energy spectrum
researchProduct

The XENON1T Dark Matter Experiment

2017

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).

xenon: targetPhotomultiplierCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical scienceslcsh:Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenonbackground: lowWIMP[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Ionization0103 physical scienceslcsh:QB460-466[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)Instrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AstrophysiquePhysicsScintillationxenon: liquidTime projection chamberphotomultiplier010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)dark matter: detectortime projection chamberchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]performanceAstrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C
researchProduct

Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

2017

International audience; We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34  kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6–240)  keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and …

WIMP nucleon: scatteringParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsWIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsXENONXenonWIMPstatistical analysis0103 physical sciencesEffective field theoryDark Matter010306 general physicsS030UDMnucleus: recoilPhysicsCoupling constanteffective field theory: nonrelativistic010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for Astrophysicsdark matter: detectorchemistryWeakly interacting massive particlesDirect SearchHigh Energy Physics::ExperimentTPC[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]recoil: energyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

First Dark Matter Search Results from the XENON1T Experiment

2017

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…

Xenon[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Massive particleGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)RecoilXenonWIMPS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsRange (particle radiation)Time projection chamberDetectorHigh Energy Physics - Phenomenologydark matter: scatteringTPCAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPDark matterFOS: Physical scienceschemistry.chemical_elementWIMP: massS030DI2Nuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesrecoil[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physique010308 nuclear & particles physicsbackgrounddark matter: detectorAstronomieGran SassochemistryDirect Searchtime projection chamber: xenoninterpretation of experiments: XENON[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for two-neutrino double electron capture of $^{124}$Xe with XENON100

2017

Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently bein…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectron captureenergy resolutionFOS: Physical scienceschemistry.chemical_elementelectron: captureElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBayesianX-rayneutrinoXenon0103 physical sciencesSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsnucleus: decayTime projection chamberphotomultiplier010308 nuclear & particles physicsbackgroundInstrumentation and Detectors (physics.ins-det)dark matter: detectorAtomic shellsensitivitytime projection chamberGran SassoxenonchemistryNeutrinoAtomic physicsRadioactive decayexperimental results
researchProduct